Intrinsic pinning in Fe- and Cu-based superconductors

Boris Maiorov*
Condensed Matter & Magnet Science, Los Alamos National Laboratory, Los Alamos, NM 87544

Besides strong thermal fluctuations due to the small coherence length and relatively high critical temperature, vortex matter in Fe and Cu-based superconductors share other characteristics such as their layered structure. These in turn have important consequences in determining how vortices are trapped by different pinning potentials. Angular dependent critical current measurements are extremely useful to determine in which way vortices are trapped and how effective different pinning centers are. It is also important to extract all the information available about vortex dynamic from non-linear transport experiment; namely analyze the power-law dependence often found between electric field and applied current. The exponent N, gives important microscopic information about the depinning processes that vortices undergo.

A common feature among iron and cuprate high temperature superconductors is the layered structure; consisting of intercalated conducting and insulating planes. This intrinsic layering gives rise to the electronic mass anisotropy as well as a periodic planar pinning potential. Depending on the insulating layer size the anisotropy of the compound can vary from close to 1 up to hundreds for Bismuth- or Mercury-based superconductors. The effect on vortices, also known as intrinsic-pinning, of these periodic planar potentials should not depend on the specifics of different materials but rather be universal. In this talk I will show transport measurements, consistent of critical current and N values, of the different angular regimes of the vortex dynamics that confirm the generality of the intrinsic pinning found in YBCO films as well as in iron based superconductors.

We will explore theoretical description of these angular regimes, both in the 3D vortex regime where vortices are considered as continuous lines, as well as in the 2D regime where vortices along the ab-planes are considered to be pancake like.

Acknowledgment: Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering
In-field Critical Current Density of BaHfO$_3$ doped PLD-REBCO Coated Conductors

Masayoshi Inoue*, 1, Kenta Tanaka2, Kazutaka Imamura2, Kohei Higashikawa2, Tomo Yoshida2, Masateru Yoshizumi2,3, Teruo Izumi2,3, Takanobu Kiss2,3

(1Kyushu University, 2 International Superconductivity Technology Center, 3 Industrial Superconductivity Technology Research Association)

BaHfO$_3$ (BHO) doping into pulsed laser deposition (PLD) processed REBa$_2$Cu$_3$O$_{7-\delta}$ (RE=rare earth, REBCO) coated conductor (CC) is one of the most promising methods for introduction of artificial pinning centers (APCs) because enhanced critical current density (J_c) can be maintained for thick superconducting layer over 2μm [1]. We also reported BHO doped GdBCO CC shows superior in-field J_c [2]. However, the effectiveness to different rare-earth composites such as SmBCO and EuBCO which is expected to be possible CCs for superconducting power devices is not yet clarified. In this study, we have investigated current transport property of PLD-REBCO CCs (RE=Sm, Eu, Gd) doped with 3.5mol% BHO. As a comparison with GdBCO CC without APCs [3], enhancement of in-filed J_c has been confirmed as shown in Figure 1. This result indicates that BHO doping into SmBCO and EuBCO CCs is very effective for in-field J_c enhancement around liquid nitrogen temperature. To draw a J_c map on a B-T plane which is useful for considering the design of superconducting devices taking into account the operation conditions, we also discuss the analytical expression of current transport property based on the percolation transition model and scaling law of the flux pinning.

This work was partly supported by the "METI: Development of Fundamental Technology for HTS Coils" and "JSPS: KAKENHI (24760235, 26420273)".

Figure 1. In-field J_c characteristics for various PLD processed REBCO CCs (RE=Sm, Eu, Gd) at 77K and 65K.
Atomic scale characterization of REBa$_2$Cu$_3$O$_{7-\delta}$ films with BaHfO$_3$ artificial pinning centers by high resolution scanning transmission electron microscopy

K. Yamada*1, K. Kaneko1, T. Nishiyama1, N. Mikami1, Y. Sato1, R. Teranishi1, T. Kato2, T. Hirayama2, M. Yoshizumi3, T. Izumi3, Y. Shiohara3

(1Kyushu University, 2Japan Fine Ceramics Center, 3International Superconductivity Technology Center)

Critical current (I_c) of superconductor (SC) films under magnetic field is strongly influenced by not only dispersions but also morphologies of artificial pinning centers (APCs) in general. Moreover, nanostrains caused by lattice mismatch at the interface between APCs and SCs are similarly the source for the enhanced vortex pinning of the SCs [1]. BaHfO$_3$ (BHO) is acknowledged as the best candidates of APCs for REBa$_2$Cu$_3$O$_{7-\delta}$ (REBCO), which shows utmost thickness dependence and isotropic angular dependence of I_c values for REBCO [2]. Therefore, it is necessary to investigate the nanostrains present at the interface between APCs and the SCs, at the atomic scale precision.

BHO introduced REBCO (RE = Gd, Eu) films were fabricated by pulsed laser deposition method. Samples for high resolution scanning transmission electron microscopy (HR-STEM) observation were prepared by ion beam method. Atomic scale imaging was performed by spherical aberration corrected STEM (JEM-ARM200F), then microstructures of BHO/REBCO interface was then examined by Fourier transformation (FFT), inverse Fourier transformation (IFFT) and Geometrical Phase Analysis (GPA) methods.

BHO nanorods and nanoparticles were dispersed within the REBCO, where {100} and {110} facets with misfit dislocations were present at their interfaces, as shown in Fig. 1. It was also that high strain regions were present around misfit dislocations.

This work was supported by the “METI” and “JSPS KAKENHI (26600046)”.

![Figure 1. Atomic scale characterization of misfit dislocations at BHO/GdBCO interfaces.](image-url)
Minimization of nanoparticle size of flux pinning centers in YBa$_2$Cu$_3$O$_y$ films by TFA-MOD process

R. Teranishi*,1, K. Otaguro1, T. Nishiyama1, K. Yamada1, K. Kaneko1, M. Yoshizumi2, T. Izumi2
(1Kyushu University, 2Superconductivity Research Laboratory-ISTEC)

REBa$_2$Cu$_3$O$_y$ (REBCO, RE is rare earth element such as Y and Gd) coated conductors have been considered as the strategic materials for electric power industries, such as energy transports, energy storages and coil applications [1]. Although YBCO is the promising material among those REBCOs due to its high critical current density (J_c) over 1 MA/cm2 at 77 K in self-field, its J_c decreases with the increase of magnetic fields which makes YBCO incapable for industrial applications. Recently, improvement of J_c in magnetic field has been performed by introducing flux pinning centers into the YBCO film artificially [2]. There are close correlation between J_c and the pinning centers [3], so that the microstructures of pinning centers have to be controlled carefully to optimize J_c characteristics effectively.

In this work, YBCO films with BaMO$_3$ (BMO, M = Zr, Hf) nanoparticles were fabricated by a metal organic deposition (MOD) method using trifluoroacetates (TFA). An additional heating process was introduced between calcination and crystallization intentionally to minimize the size of BMO nanoparticles in the film [4]. As a result, the average particle sizes of BZO and BHO were reduced from 34 to 19 nm and from 23 to 17 nm, respectively. Consequently, J_c values of the YBCO films with BZO and BHO at 77K in 5T (B//c-axis) were enhanced from 2.4×10^4 to 1.2×10^5 A/cm2 and from 1.8×10^4 to 2.4×10^4 A/cm2, respectively as shown in figure 1.

This work is supported by the Ministry of Economy, Trade and Industry (METI) as “Development of Fundamental Technologies for HTS Coils” and was supported partly by JSPS KAKENHI Grant Number 26600075.

![Figure 1. Dependence of J_c on magnetic field.](image-url)